

http://natscience.jspi.uz

No5/3(2021)

biology chemistry geography

O'ZBEKISTON RESPUBLIKASI OLIY VA O'RTA MAXSUS TA'LIM VAZIRLIGI

ABDULLA QODIRIY NOMIDAGI JIZZAX DAVLAT PEDAGOGIKA INSTITUTI TABIIY FANLAR FAKULTETI

dotsenti, kimyo fanlari nomzodi

DAMINOV G'ULOM NAZIRQULOVICH

tavalludining 60 yilligiga bag'ishlangan

onlayn konferensiya materiallari

Jizzax-2021

ТАХРИР ХАЙЪАТИ

Бош мухаррир -

У.О.Худанов

т.ф.н., доц.

Бош мухаррир ёрдамчиси-Д.К.Мурадова,

PhD, доц.

Масъул котиб-

Д.К.Мурадова

Муассис-Жиззах давлат педагогика институти

Журнал 4 марта чикарилади

(хар чоракда)

Журналда чоп этилган маълумотлар аниклиги ва тўғрилиги учун муаллифлар масъул

Журналдан кўчириб босилганда манбаа аниқ кўрсатилиши шарт

ТАХРИРИЯТ АЪЗОЛАРИ

- 1. Худанов У.О. ЖДПИ Табиий фанлар факултети декани,т.ф.н., доц.
- 2. Шылова О.А.-д.х.н., профессор Института химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН)
- 3. Маркевич М.И.-ф.ф.д. проф Белорусия ФА
- 4. Elbert de Josselin de Jong- προφεссор, Niderlandiya
- 5. Кодиров Т- ТТЕСИ к.ф.д, профессор
- 6. Абдурахмонов Э СамДУ к.ф.д., профессор
- 7. Сманова З.А,-ЎзМУ к.ф.д., профессор
- 8. Султонов М-ЖДПИ к.ф.д,доц
- 9. Яхшиева 3- ЖДПИ к.ф.д, проф.в.б.
- 10. Рахмонкулов У- ЖДПИ б.ф.д., проф.
- 11. Мавлонов Х- ЖДПИ б.ф.д.,проф
- 12. Муродов К-СамДУ к.ф.н., доц.
- 13. Абдурахмонов F- ЎзМУ фалсафа фанлари доктори (кимё бўйича) (PhD), доц
- 14. Хакимов К ЖДПИ г.ф.н., доц.
- 15. Азимова Д- ЖДПИ фалсафа фанлари доктори (биология бўйича) (PhD), доц
- 16. Юнусова Зебо ЖДПИ к.ф.н., доц.
- 17. Гудалов М- ЖДПИ фалсафа фанлари доктори (география фанлари бўйича) (PhD)
- 18. Мухаммедов О- ЖДПИ г.ф.н., доц
- 19. Хамраева Н- ЖДПИ фалсафа фанлари доктори (биология фанлари бўйича) (PhD) 20. Рашидова К- ЖДПИ фалсафа фанлари
- 20. Рашидова К- ЖДПИ фалсафа фанларі доктори (кимё бўйича) (PhD), доц
- **21**. Мурадова Д- ЖДПИ фалсафа фанлари доктори (кимё фанлари бўйича) (PhD), доц

Жиззах давлат педагогика институти Табиий фанлар факултети

Табиий фанлар-Journal of Natural Science-электрон журнали

/http/www/natscience.jspi.uz

ПОЛУЧЕНИЕ КОМПЛЕКСНЫХ ПРОИЗВОДНЫХ ПРОЦЕССОВ НА ОСНОВЕ А-АЦЕТИЛЕНОВЫХ АМИНОСОЕДИНЕНИЙ.

 1 Зокиров С., 2 Муминова Н., 1 Fanueв Қ. 9y-19, 1 Мехмонов Б 1y-20.

- 1 Наманганский инженерно-технологический институт
- ² Джизакский государственный педагогический институт

Аннотация. Ацетилен и его производные склонны к образованию комплексных соединений с переходными металлами. В частности, в ацетиленовых аминспиртах легко образуются комплексы за счет атомов азота. В данной работе изучены процессы образования комплексных соединений вторичных α -ацетиленовых спиртов с ионами Cu $^{+}$ и определены физикохимические константы.

Аннотация. Ацетилен ва унинг хосилалари ўтиш металлари билан комплекс бирикмалар хосил килишга мойил. Айникса, ацетилен аминоспиртларида азот атом хисобида комплекс хосил килиш янада енгиллашади. Уш бу тадкикот ишида иккиламчи α -ацетилен спиртларини Cu^{+2} иони биан комплекс бирикмалар хосил килиш жараёнлари урганилган ва физик кимёвий константалари аникланган.

Ключевые слова: Ацетилен, комплексные соединения, аминоспирты, пипередин, марфолин, анабазин, цитезин.

Ацетилен и его производные склонны к образованию комплексов с ионами переходных металлов. Эти свойства более ярко проявляются у ацетиленовых аминосоединений, из-за наличия в составе их молекул атома азота. Печём, среди них особый интерес представляют ААС, полученные на основе азотосодержащих гетероциклов, таких как пиперидин, морфолин, анабазин, цитизин и др. Одновременное присутствие в молекулах этих веществ нескольких потенциальных мест связывания (-OH, $\equiv N$, $C \equiv C$ цикл-, различные алкильные, арильные, гетероциклические и другие заместители в цикле) делает их весьма эффективными лигандами.

Следует отметить, что ионы меди и ряда других металлов оказывает двоякое действие на большинство живых организмов, так как с одной стороны они необходимы для жизнедеятельности биологических систем, а с другой стороны могут оказаться для них токсичными.

Поэтому комплексообразующие вещества широко применяются в медицине для выведения нежелательных ионов металлов из организма, а также при получении химических препаратов, применяемых в сельском хозяйстве в качестве дефолиантов, гербицидов, стимуляторов роста растений и др.. Кроме того, изучение процессов комплексообразования интересно с точки зрения

"Journal of Natural Science" №5/3 2021 y. http://natscience.jspi.uz

выяснения механизма действия ионов некоторых металлов в качестве катализаторов в реакциях ацетиленовых соединений и для объяснения ряда закономерностей, наблюдаемых при этом.

В связи с вышеизложенным, в данном разделе работы, на примере взаимодействия 1- пиперидиногептин-2-ола-4 и 1-морфолино-гептин-2-ола-4 в качестве лигандов с Cu^{2+} , изучались некоторые характерные особенности комплексообразования синтезированных аминосоединений с ионами металлов.

В качестве комплексообразующего агента использовали хлорид меди $(CuCl_2*2H_2O)$ марки "ч.д.а.". Учитывая, что это соль подвергается гидролизу, процесс получения комплексов проводили в среде органического растворителя - ацетона, изобутилового и изоамилового спиртов.

Количество азота и металла в продуктах определяли соответственно микрометодом Дюма и комплексонометрическим титрованием, а ионы хлоридов определяли по меркуриметрическому методу.

Полученные комплексы и их составы приведены в таблице 1. Эти комплексы представляют собой кристаллические вещества, не имеющие ярко выраженную температуру плавления из-за деструкции при повышенных температурах. Они хорошо растворяется в азотной кислоте, аммиачной воде и ДМФА, но плохо в воде.

 $\it Tаблица~1.$ Комплексы AAC с хлоридом меди(II) и их составы.

№	Комплексы меди (II)	Элементный состав, %			Содержание	
					ионов,%	
		С	Н	N	Cu ²⁺	Cl ⁻
1	С веществом І найдено	43,50	6,26	4,44	19,82	21,15
	вычислено	43,63	6,40	4,24	19,40	21,50
2	С веществом II найдено	39,80	4,20	4,20	19,45	21,55
	вычислено	40,00	5,75	4,22	19,30	21,35

В ИК-спектрах этих веществ наблюдается полосы поглощения в области 3500-3200 см⁻¹, соответствующие валентным колебаниям СН-группы. Аналогичные пики наблюдаются и в области 1100-1050 см⁻¹, характерные для деформационных колебаний СН-группы. Кроме того, появляется новая полоса поглощения в области 1610-1600 см⁻¹, которую можно отнести к валентным колебаниям С-N связи пиперидинового кольца. Это однозначно указывает на преимущественное участие атома азота в реакции комплексообразования. В таком случае можно предполагать две возможные структуры синтезированного

"Journal of Natural Science" №5/3 2021 y. http://natscience.jspi.uz

комплексного соединения: в одной из них лиганд будет занимать бидентантное положение

$$CH_3 - CH_2 - CH_2 - CH - C \equiv C - CH_2$$

$$O \qquad N$$

$$H \qquad Cu^{2+}$$

а в другой - один и тот же лиганд координационно связан с двумя центральными атомами, играя роль мостика между ними.

Таким образом, в результате проведенных исследований установлено ряд закономерностей протекания реакции комплексообразования выбранных аминопроизводных ацетилена с ионами $Cu^{2}+$ и выяснены некоторые свойства полученных при этом продуктов.

На основе вторичного α-ацетиленового спирта 1-гексин-3-ол синтезированы комплексные соединения 1-морфолино-2-гептин-4-ол, 1-пиперидино-2-гептин-4-ол, 1-анабазино-2-гептин-4-ол, 1-цитезино-2-гептин-4-ол с ионами $CuCl_2$ • $2H_2O$. Изучены их антибактериальные и гербицидные свойства.

Заключение. Процесс образования комплексных соединений с ацетиленамино-спиртами с ионом Cu ^{+ 2} протекает легко. Полученные комплексные соединения обладают антимикробными и гербицидными свойствами.

Список использованной литературы

- 1.АС №1624945. "Ингибитор коррозии в сероводородсодержащих средах" Зокиров Содик и др. 1 октября 1990 г.
- 2. Химия ацетилеа. Ответственный редактор М. Ф. Шостаковский. М.: Издательство Наука, 1968 г. -528с.
- 3. Либман Н. М., Кузнецов С. Г. Аминоспирты Ацетиленового ряда. 1. Получение 1,1дизамещённых -4-диалкиламинобутин-2-олов-1.// Журнал органической химии. -1960. –Т.30 с.1197
- 4. Котляревский И.Л., Шварцберг М.С., Фишер Л.Б. Реакции ацетиленовых соединений. Новосибирск.: Наука, 1967.-354с.